

 Hide navigation sidebar

 Hide table of contents sidebar

 Toggle site navigation sidebar

 MuPDF 1.24.0 documentation

 Toggle Light / Dark / Auto color theme

 Toggle table of contents sidebar

 MuPDF 1.24.0 documentation

 User Guide

	Quick Start Guide
	Using MuPDF with C
	Using MuPDF WASM

API Reference

	MuPDF on the command lineToggle child pages in navigation
	mutool draw
	mutool convert
	mutool trace
	mutool show
	mutool extract
	mutool clean
	mutool merge
	mutool poster
	mutool create
	mutool sign
	mutool info
	mutool pages
	mutool trim
	mutool run

	C APIToggle child pages in navigation
	Core API
	The Fitz Context
	Error Handling
	Memory Allocation
	Pool Allocator
	Reference Counting
	Hash Table
	Binary Tree
	XML Parser
	String Functions
	String Formatting
	Math Functions
	I/O API
	Buffers
	Input Streams and Filters
	Output Streams and Filters
	File Archives
	Graphics API
	Colors
	Pixmaps

	MuPDF & Javascript
	Language Bindings

Other

	Progressive Loading
	Android Library
	Changes
	Third Party Libraries Used by MuPDF

 v: latest

 	Versions
	latest
	1.22.1
	1.22.0

 	Downloads
	pdf

 	On Read the Docs
	
 Project Home

	
 Builds

 Back to top

 Toggle Light / Dark / Auto color theme

 Toggle table of contents sidebar

 Find #mupdf on Discord

 Do you have any feedback on this page?

Language Bindings#

Auto-generated C++, Python and C# versions of the MuPDF C API are available.

These APIs are currently a beta release and liable to change.

The C++ MuPDF API#

Basics#

	Auto-generated from the MuPDF C API’s header files.

	Everything is in C++ namespace mupdf.

	All functions and methods do not take fz_context* arguments.
(Automatically-generated per-thread contexts are used internally.)

	All MuPDF setjmp()/longjmp()-based exceptions are converted into C++ exceptions.

Low-level C++ API#

The MuPDF C API is provided as low-level C++ functions with ll_ prefixes.

	No fz_context* arguments.

	MuPDF exceptions are converted into C++ exceptions.

Class-aware C++ API#

C++ wrapper classes wrap most fz_* and pdf_* C structs.

	Class names are camel-case versions of the wrapped struct’s
name, for example fz_document’s wrapper class is mupdf::FzDocument.

	Classes automatically handle reference counting of the underlying C structs,
so there is no need for manual calls to fz_keep_*() and fz_drop_*(), and
class instances can be treated as values and copied arbitrarily.

Class-aware functions and methods take and return wrapper class instances
instead of MuPDF C structs.

	No fz_context* arguments.

	MuPDF exceptions are converted into C++ exceptions.

	Class-aware functions have the same names as the underlying C API function.

	Args that are pointers to a MuPDF struct will be changed to take a reference to
the corresponding wrapper class.

	Where a MuPDF function returns a pointer to a struct, the class-aware C++
wrapper will return a wrapper class instance by value.

	Class-aware functions that have a C++ wrapper class as their first parameter
are also provided as a member function of the wrapper class, with the same
name as the class-aware function.

	Wrapper classes are defined in mupdf/platform/c++/include/mupdf/classes.h.

	Class-aware functions are declared in mupdf/platform/c++/include/mupdf/classes2.h.

Usually it is more convenient to use the class-aware C++ API rather than the
low-level C++ API.

C++ Exceptions#

C++ exceptions use classes for each FZ_ERROR_* enum, all derived from a class
mupdf::FzErrorBase which in turn derives from std::exception.

For example if MuPDF C code does fz_throw(ctx, FZ_ERROR_GENERIC,
"something failed"), this will appear as a C++ exception with type
mupdf::FzErrorGeneric. Its what() method will return code=2: something
failed, and it will have a public member m_code set to FZ_ERROR_GENERIC.

Example wrappers#

The MuPDF C API function fz_new_buffer_from_page() is available as these
C++ functions/methods:

// MuPDF C function.
fz_buffer *fz_new_buffer_from_page(fz_context *ctx, fz_page *page, const fz_stext_options *options);

// MuPDF C++ wrappers.
namespace mupdf
{
 // Low-level wrapper:
 ::fz_buffer *ll_fz_new_buffer_from_page(::fz_page *page, const ::fz_stext_options *options);

 // Class-aware wrapper:
 FzBuffer fz_new_buffer_from_page(const FzPage& page, FzStextOptions& options);

 // Method in wrapper class FzPage:
 struct FzPage
 {
 ...
 FzBuffer fz_new_buffer_from_page(FzStextOptions& options);
 ...
 };
}

Extensions beyond the basic C API#

	Some generated classes have extra begin() and end() methods to allow
standard C++ iteration:

Show/hide

#include "mupdf/classes.h"
#include "mupdf/functions.h"

#include <iostream>

void show_stext(mupdf::FzStextPage& page)
{
 for (mupdf::FzStextPage::iterator it_page: page)
 {
 mupdf::FzStextBlock block = *it_page;
 for (mupdf::FzStextBlock::iterator it_block: block)
 {
 mupdf::FzStextLine line = *it_block;
 for (mupdf::FzStextLine::iterator it_line: line)
 {
 mupdf::FzStextChar stextchar = *it_line;
 fz_stext_char* c = stextchar.m_internal;
 using namespace mupdf;
 std::cout << "FzStextChar("
 << "c=" << c->c
 << " color=" << c->color
 << " origin=" << c->origin
 << " quad=" << c->quad
 << " size=" << c->size
 << " font_name=" << c->font->name
 << "\n";
 }
 }
 }
}

	There are various custom class methods and constructors.

	There are extra functions for generating a text representation of ‘POD’
(plain old data) structs and their C++ wrapper classes.

For example for fz_rect we provide these functions:

std::ostream& operator<< (std::ostream& out, const fz_rect& rhs);
std::ostream& operator<< (std::ostream& out, const FzRect& rhs);
std::string to_string_fz_rect(const fz_rect& s);
std::string to_string(const fz_rect& s);
std::string Rect::to_string() const;

These each generate text such as: (x0=90.51 y0=160.65 x1=501.39 y1=1215.6)

Runtime environmental variables#

All builds#

	MUPDF_mt_ctx

Controls support for multi-threading on startup.

	If set with value 0, a single fz_context* is used for all threads; this
might give a small performance increase in single-threaded programmes, but
will be unsafe in multi-threaded programmes.

	Otherwise each thread has its own fz_context*.

One can instead call mupdf::reinit_singlethreaded() on startup to force
single-threaded mode. This should be done before any other use of MuPDF.

Debug builds only#

Debug builds contain diagnostics/checking code that is activated via these
environmental variables:

	MUPDF_check_refs

If 1, generated code checks MuPDF struct reference counts at
runtime.

	MUPDF_check_error_stack

If 1, generated code outputs a diagnostic if a MuPDF function changes the
current fz_context’s error stack depth.

	MUPDF_trace

If 1 or 2, class-aware code outputs a diagnostic each time it calls a
MuPDF function (apart from keep/drop functions).

If 2, low-level wrappers output a diagnostic each time they are
called. We also show arg POD and pointer values.

	MUPDF_trace_director

If 1, generated code outputs a diagnostic when doing special
handling of MuPDF structs containing function pointers.

	MUPDF_trace_exceptions

If 1, generated code outputs diagnostics when it converts MuPDF
setjmp()/longjmp() exceptions into C++ exceptions.

	MUPDF_trace_keepdrop

If 1, generated code outputs diagnostics for calls to *_keep_*() and
drop().

Limitations#

	Global instances of C++ wrapper classes are not supported.

This is because:

	C++ wrapper class destructors generally call MuPDF functions (for example
fz_drop_*()).

	The C++ bindings use internal thread-local objects to allow per-thread
fz_context’s to be efficiently obtained for use with underlying MuPDF
functions.

	C++ globals are destructed after thread-local objects are destructed.

So if a global instance of a C++ wrapper class is created, its destructor
will attempt to get a fz_context* using internal thread-local objects
which will have already been destroyed.

We attempt to display a diagnostic when this happens, but this cannot be
relied on as behaviour is formally undefined.

The Python and C# MuPDF APIs#

	A Python module called mupdf.

	A C# namespace called mupdf.

	C# bindings are experimental as of 2021-10-14.

	Auto-generated from the C++ MuPDF API using SWIG, so inherits the abstractions of the C++ API:

	No fz_context* arguments.

	Automatic reference counting, so no need to call fz_keep_*() or fz_drop_*(), and we have value-semantics for class instances.

	Native Python and C# exceptions.

	Output parameters are returned as tuples.

For example MuPDF C function fz_read_best() has prototype:

fz_buffer *fz_read_best(fz_context *ctx, fz_stream *stm, size_t initial, int *truncated);

The class-aware Python wrapper is:

mupdf.fz_read_best(stm, initial)

and returns (buffer, truncated), where buffer is a SWIG proxy for a
mupdf::FzBuffer instance and truncated is an integer.

	Allows implementation of mutool in Python - see
mupdf:scripts/mutool.py
and
mupdf:scripts/mutool_draw.py.

	Provides text representation of simple ‘POD’ structs:

rect = mupdf.FzRect(...)
print(rect) # Will output text such as: (x0=90.51 y0=160.65 x1=501.39 y1=215.6)

	This works for classes where the C++ API defines a to_string() method as described above.

	Python classes will have a __str__() method, and an identical __repr__() method.

	C# classes will have a ToString() method.

	Uses SWIG Director classes to allow C function pointers in MuPDF structs to call Python code.

	This has not been tested on C#.

Installing the Python mupdf module using pip#

The Python mupdf module is available on the Python Package Index (PyPI) website.

	Install with pip install mupdf.

	Pre-built Wheels (binary Python packages) are provided for Windows and Linux.

	For more information on the latest release, see changelog below and: https://pypi.org/project/mupdf/

Doxygen/Pydoc API documentation#

Auto-generated documentation for the C, C++ and Python APIs is available at:
https://ghostscript.com/~julian/mupdf-bindings/

	All content is generated from the comments in MuPDF header files.

	This documentation is generated from an internal development tree, so may
contain features that are not yet publicly available.

	It is updated only intermittently.

Example client code#

Using the Python API#

Minimal Python code that uses the mupdf module:

import mupdf
document = mupdf.FzDocument('foo.pdf')

A simple example Python test script (run by scripts/mupdfwrap.py -t) is:

	scripts/mupdfwrap_test.py

More detailed usage of the Python API can be found in:

	scripts/mutool.py

	scripts/mutool_draw.py

Example Python code that shows all available information about a document’s Stext blocks, lines and characters.

Show/hide

#!/usr/bin/env python3

import mupdf

def show_stext(document):
 '''
 Shows all available information about Stext blocks, lines and characters.
 '''
 for p in range(document.fz_count_pages()):
 page = document.fz_load_page(p)
 stextpage = mupdf.FzStextPage(page, mupdf.FzStextOptions())
 for block in stextpage:
 block_ = block.m_internal
 log(f'block: type={block_.type} bbox={block_.bbox}')
 for line in block:
 line_ = line.m_internal
 log(f' line: wmode={line_.wmode}'
 + f' dir={line_.dir}'
 + f' bbox={line_.bbox}'
)
 for char in line:
 char_ = char.m_internal
 log(f' char: {chr(char_.c)!r} c={char_.c:4} color={char_.color}'
 + f' origin={char_.origin}'
 + f' quad={char_.quad}'
 + f' size={char_.size:6.2f}'
 + f' font=('
 + f'is_mono={char_.font.flags.is_mono}'
 + f' is_bold={char_.font.flags.is_bold}'
 + f' is_italic={char_.font.flags.is_italic}'
 + f' ft_substitute={char_.font.flags.ft_substitute}'
 + f' ft_stretch={char_.font.flags.ft_stretch}'
 + f' fake_bold={char_.font.flags.fake_bold}'
 + f' fake_italic={char_.font.flags.fake_italic}'
 + f' has_opentype={char_.font.flags.has_opentype}'
 + f' invalid_bbox={char_.font.flags.invalid_bbox}'
 + f' name={char_.font.name}'
 + f')'
)

document = mupdf.FzDocument('foo.pdf')
show_stext(document)

Basic PDF viewers written in Python and C##

	scripts/mupdfwrap_gui.py

	scripts/mupdfwrap_gui.cs

	Build and run with:

	./scripts/mupdfwrap.py -b all --test-python-gui

	./scripts/mupdfwrap.py -b --csharp all --test-csharp-gui

Changelog#

[Note that this is only for changes to the generation of the C++/Python/C#
APIs; changes to the main MuPDF API are not detailed here.]

	2023-11-16:

	Fixed debug builds on Windows.

	Fixed 32-bit builds on Windows.

	Fixed cross-build to arm64 on MacOS.

	Fixed unsafe custom fz_search_page2().

	Added custom fz_highlight_selection2().

	Added debug diagnostics to Director use_virtual_*() methods.

	Various fixes for Pyodide builds.

	Use version numbers in names of shared libraries.

	Added custom wrapping of struct pdf_clean_options.

	Use $CXX if defined when building bindings (not Windows).

	2023-07-13:

	Improved generation of extra/customised functions and methods.

Instead of adding custom C++/Python/C# code, we instead inject new C++
functions as though they were part of the MuPDF C API when parsing MuPDF C
headers. Thus customised functions are automatically wrapped and available
as low-level functions, class-aware functions and class methods.

	2023-05-02:

	Improved implementation of Python-specific wrappers:

	Consistently use low-level wrappers to implement high-level wrappers.

	Added missing low-level wrappers.

	ll_fz_buffer_storage_memoryview()

	ll_fz_fill_text2()

	ll_fz_pixmap_copy()

	ll_fz_parse_page_range_orig()

	ll_fz_format_output_path()

	ll_fz_buffer_extract()

	ll_fz_buffer_extract_copy()

	ll_fz_new_buffer_from_copied_data()

	ll_pdf_dict_getl()

	ll_pdf_dict_putl()

	ll_fz_fill_text()

	ll_fz_pixmap_samples_memoryview()

	Renamed mupdf.python_bytes_data() to mupdf.python_buffer_data()
because it works on any instance that supports the Python Buffer
interface.

	Renamed python_buffer_to_memoryview() to
fz_buffer_storage_memoryview(), because it uses a MuPDF fz_buffer,
not a Python buffer.

	Added ll_fz_pixmap_copy_raw() for copying raw sample data directly into
a fz_pixmap.

	In wrappers for pdf_dict_getl() and pdf_dict_putl(), generate
diagnostics if variadic args are the wrong type.

	Renamed fz_pixmap_samples2() to ll_fz_pixmap_samples_memoryview().

	Added fz_warn(), same as ll_fz_wrap().

	Fixes for MacOS and improved finding of struct members.

	Give Python and C# access to arrays of floats; e.g. for fz_stroke_state’s
float dash_list[32];.

	Updated bindings to cope with recent rename pdf_field_name() =>
pdf_load_field_name().

	MUPDF_trace also enables
fz_clone_context()/fz_new_context()/fz_drop_context() diagnostics.

	Disabled questionable diagnostics about memory leaks.

	In fz_compressed_buffer class wrapper, give access to
m_internal->buffer.

	If Python callback raises an exception, add a Python backtrace to the
exception text.

	Allow building with Visual Studio 2022 without VS-2019 v142 tools
installed. See new --vs-upgrade 0|1 option.

	Also use pdf_new_*() as constructors of fz_* structs where applicable.
For example this adds pdf_new_stext_page_from_annot() as a constructor of
fz_stext_page.

	Use new scripts/wrap/wdev.py to find C# compiler csc.exe on Windows.

	Fixed handling of functions that return const fz_foo*.

	Use our own handling of out-params instead of SWIG.

	Fixes for use with libclang-16.0.0

	2023-02-14:

	Simplified builds by requiring a standalone libclang (typically pypi.org’s
libclang in a Python venv) and fixed various issues with using latest
libclang.

	Added test for exceptions from Python SWIG Director callbacks.

	2023-02-03:

	Provide a default constructor for all wrapper classes.

	Added Python __repr__() methods for POD classes, identical to the
existing __str__() methods.

	Fixed handling of exceptions in Python SWIG Director callbacks.

	Fixed wrapping of PDF filters.

	2023-01-20:

	Don’t disable SWIG Directors on Windows.

	Show warnings if env settings (e.g. MUPDF_trace) will be ignored
because we are a release build.

	Added Python support for MuPDF Stories.

	2023-01-12: New release of Python package mupdf-1.21.1.20230112.1504
(from mupdf-1.21.x git 04c75ec9db31), with pre-built Wheels for Windows and
Linux. See: https://pypi.org/project/mupdf

	Reduced size of Python sdist by excluding some test directories.

	Python installation with pip will now automatically install
libclang and swig.

	Added Windows-specific documentation.

	Fixes for Windows builds.

	2022-11-23:

	Avoid need to specify LD_LIBRARY_PATH on Unix by using rpath.

	Allow misc prefixes in build directory.

	Added accessors to fz_text_span wrapper class. This simplifies use from
Python, e.g. returning class wrappers for .font and .trm members, and
giving access to the .items[] array.

	Improved control over single-threaded behaviour.

	Fixed python wrappers for fz_set_warning_callback() and
fz_set_error_callback().

	Fixed implementation of ll_pdf_set_annot_color().

	2022-10-21:

	Document that global instances of wrapper classes are not supported.

	Python: provide class-aware out-param wrappers.

	Generate operator== and operator!= for POD structs and wrapper classes.

	Moved operator<< into top-level namespace.

	Document that we require the clang package on Linux when building.

	Disable unhelpful SWIG warnings when building.

	Support for calling fz_document_handler fnptrs in C++ API.

	Work around Memento build problem on Linux.

	Fixed some leaks by improving detection of functions returning kept/borrowed references.

	Fixed handling of kept/borrowed references in Python/C# functions with out-params.

	2022-08-29: Simplified naming of C++/Python/C# classes and functions.

	Don’t remove leading fz_ from function/method names.

	For low-level wrappers, add ll_ prefix to the original name; don’t
remove initial fz_; don’t add p prefix for pdf_*() wrappers.

	For class-aware wrapper functions, use original C name; don’t use m prefix.

	Include initial Fz prefix for wrapper classes of fz_* structs.

So new naming scheme is:

	Low-level wrappers: prepend ll_ to the full MuPDF C function name.

	Wrapper class names: convert the full struct name to camel-case.

	Wrapper class methods: use the full wrapped MuPDF C function name.

	Class-aware wrappers: use the full wrapped MuPDF C function name.

	2022-5-11: Documented the experimental C# API.

	2022-3-26: New release of Python package mupdf-1.19.0.20220326.1214
(from mupdf-1.19.0 git 466e06fc7e01), with pre-built Wheels for Windows and
Linux. See: https://pypi.org/project/mupdf/

	Fixed SWIG Directors wrapping classes on Windows.

	2022-3-23: New release of Python package mupdf-1.19.0.20220323.1255 (from
mupdf-1.19.0 git 58e2b82bf7d1e7), with pre-built Wheels for Windows and
Linux. See: https://pypi.org/project/mupdf

Details

Show/hide

	Use SWIG Director classes to support MuPDF structs that contain fn
pointers. This allows MuPDF to call Python callback code. [.line-through]#Only
available on Unix at the moment.#

	This allows us to provide Python wrappers for fz_set_warning_callback()
and fz_set_error_callback().

	Added alternative wrappers for MuPDF functions in the form of free-standing
functions that operate on our wrapper classes. Useful when porting existing
code to Python, and generally as a non-class-based API that still gives
automatic handling of reference counting. New functions have same name as
underlying MuPDF function with a m prefix; they do not take a fz_context
arg and take/return references to wrapper classes instead of pointers to MuPDF
structs.

	Class methods now call these new free-standing wrappers.

	Various improvements to enums and non-copyable class wrappers.

	Use /** ... */ comments in generated code so visible to Doxygen.

	Improvements to and fixes to reference counting.

	Use MuPDF naming conventions for detection of MuPDF functions that return
borrowed references.

	Improved detection of whether a MuPDF struct uses reference counting.

	Fixed some reference counting issues when handling out-params.

	Added optional runtime ref count checking.

	For fns that return raw unsigned char array, provide C++ wrappers that
return a std::vector. This works much better with SWIG.

	Allow construction of Document from PdfDocument.

	Allow writes to PdfWriteOptions::opwd_utf8 and
PdfWriteOptions::upwd_utf8.

	Added Page::doc() to return wrapper for .doc member.

	Added PdfPage::super() to return Page wrapper for .super.

	Added PdfDocument::doc() to return wrapper for .doc member.

	Added PdfObj::obj() to return wrapper for .obj member.

	Made Python wrappers for fz_fill_text() take Python tuple/list for float*
color arg.

	Improved wrapping of pdf_lexbuf.

	Added Page downcast constructor from PdfPage.

	Expose pdf_widget_type enum.

	Improved python bindings for *dict_getl() and *dict_putl(). We now also
provide mpdf_dict_getl() etc handling variable number of args.

	Improvements to wrapping of pdf_filter_options, pdf_redact_options,
fz_pixmap, pdf_set_annot_color, pdf_obj.

	Allow direct use of PDF_ENUM_NAME_* enums as PdfObj’s in Python.

	Added wrappers for pdf_annot_type() and pdf_string_from_annot_type().

	Buffer.buffer_storage() raises an exception with useful error info (it is
not possible to use it from SWIG bindings).

	Added various fns to give Python access to some raw pointer values, e.g. for
passing to mupdf.new_buffer_from_copied_data().

	Avoid excluding class method wrappers for pdf_*() fns in python.

	2022-02-05: Uploaded Doxygen/Pydoc documentation for the C, C++ and Python
APIs, from latest development tree.

	2021-09-29: Released Python bindings for mupdf-1.19.0 (git 61b63d734a7)
to pypi.org (mupdf 1.19.0.20210929.1226) with pre-built Wheels for Windows
and Linux.

	2021-08-05: Released Python package mupdf-1.18.0.20210805.1716 on
pypi.org with pre-built Wheels for Windows and Linux.

	Improved constructors of fz_document_writer wrapper class
DocumentWriter.

	Fixed operator<< for POD C structs - moved from mupdf namespace to
top-level.

	Added scripts/mupdfwrap_gui.py - a simple demo Python PDF viewer.

	Cope with fz_paint_shade()’s new fz_shade_color_cache **cache arg.

	2021-05-21: First release of Python package, mupdf-1.18.0.20210521.1738,
on pypi.org with pre-built Wheels for Windows and Linux.

Details

Show/hide
* Changes that apply to both C++ and Python bindings:

	Improved access to metadata - added Document::lookup_metadata()
overload that returns a std::string. Also provided extern const
std::vector<std::string> metadata_keys; containing a list of the supported
keys.

	Iterating over Outline’s now returns OutlineIterator objects so that
depth information is also available.

	Fixed a reference-counting bug in iterators.

	Page::search_page() now returns a std::vector.

	PdfDocument now has a default constructor which uses
pdf_create_document().

	Include wrappers for functions that return fz_outline*, e.g. Outline
Document::load_outline();.

	Removed potentially slow call of getenv("MUPDF_trace") in every C++
wrapper function.

	Removed special-case naming of wrappers for fz_run_page() - they are now
called mupdf::run_page() and mupdf::Page::run_page(), not mupdf::run()
etc.

	Added text representation of POD structs.

	Added support for 32 and 64-bit Windows.

	Many improvements to C++ and Python code generation.

	Changes that apply only to Python:

	Improved handling of out-parameters:

	If a function or method has out-parameters we now systematically return a
Python tuple containing any return value followed by the out-parameters.

	Don’t treat FILE* or pointer-to-const as an out-parameter.

	Added methods for getting the content of a mupdf.Buffer as a Python
bytes instance.

	Added Python access to nested unions in fz_stext_block wrapper class
mupdf.StextBlock.

	Allow the MuPDF Python bindings to be installed with pip.

	This uses a source distribution of mupdf that has been uploaded to
pypi.org in the normal way.

	Installation involves compiling the C, C++ and Python bindings so will
take a few minutes. It requires SWIG to be installed.

	Pre-built wheels are not currently provided.

	Write generated C++ information into Python pickle files to allow building
on systems without clang-python.

	Various changes to allow building in Python “Manylinux” containers.

	Allow Python access to nested unions in fz_stext_block wrapper. SWIG
doesn’t handle nested unions so instead we provide accessor methods in our
generated C++ class.

	Added accessors to fz_image’s wrapper class.

	Improved generated accessor methods - e.g. ignore functions and function
pointers and return int instead of int8_t to avoid SWIG getting confused.

	2020-10-07: Experimental release of C++ and Python bindings in MuPDF-1.18.0.

Building the C++, Python and C# MuPDF APIs from source#

General requirements#

	Windows, Linux, MacOS or OpenBSD.

	Build should take place inside a Python venv.

	libclang Python interface onto the libclang
C/C++ parser.

	swig, for Python and C# bindings.

	Mono, for C# bindings on platforms
other than Windows.

Setting up#

Windows only#

	Install Python.

	Use the Python Windows installer from the python.org website:
http://www.python.org/downloads

	Don’t use other installers such as the Microsoft Store Python package.

	If Microsoft Store Python is already installed, leave it in place and install
from python.org on top of it - uninstalling before running the python.org
installer has been known to cause problems.

	A default installation is sufficient.

	Debug binaries are required for debug builds of the MuPDF Python API.

	If “Customize Installation” is chosen, make sure to include “py launcher” so
that the py command will be available.

	Also see: https://docs.python.org/3/using/windows.html

	Install Visual Studio 2019. Later versions may not work with MuPDF’s
solution and build files.

All platforms#

	Get the latest version of MuPDF in git.

git clone --recursive git://git.ghostscript.com/mupdf.git

	Create and enter a Python venv and upgrade pip.

	Windows.

py -m venv pylocal
.\pylocal\Scripts\activate
python -m pip install --upgrade pip

	Linux, MacOS, OpenBSD

python3 -m venv pylocal
. pylocal/bin/activate
python -m pip install --upgrade pip

General build flags#

In all of the commands below, one can set environmental variables to control
the build of the underlying MuPDF C API, for example USE_SYSTEM_LIBJPEG=yes.

In addition, XCXXFLAGS can be used to set additional C++ compiler flags when
building the C++ and Python bindings (the name is analogous to the XCFLAGS
used by MuPDF’s makefile when compiling the core library).

Building and installing the Python bindings using pip#

	Windows, Linux, MacOS.

cd mupdf && pip install -vv .

	OpenBSD.

Building using pip is not supported because libclang is not
available from pypi.org so pip will fail to install prerequisites from
pypackage.toml.

Instead one can run setup.py directly:

cd mupdf && setup.py install

Building the Python bindings#

	Windows, Linux, MacOS.

pip install libclang swig setuptools
cd mupdf && python scripts/mupdfwrap.py -b all

	OpenBSD.

libclang is not available from pypi.org, but we can instead use
the system py3-llvm package.

sudo pkg_add py3-llvm
pip install swig setuptools
cd mupdf && python scripts/mupdfwrap.py -b all

Building the C++ bindings#

	Windows, Linux, MacOS.

pip install libclang setuptools
cd mupdf && python scripts/mupdfwrap.py -b m01

	OpenBSD.

libclang is not available from pypi.org, but we can instead use
the system py3-llvm package.

sudo pkg_add py3-llvm
pip install setuptools
cd mupdf && python scripts/mupdfwrap.py -b m01

Building the C# bindings#

	Windows.

pip install libclang swig setuptools
cd mupdf && python scripts/mupdfwrap.py -b --csharp all

	Linux.

sudo apt install mono-devel
pip install libclang swig
cd mupdf && python scripts/mupdfwrap.py -b --csharp all

	MacOS.

Building the C# bindings on MacOS is not currently supported.

	OpenBSD.

sudo pkg_add py3-llvm mono
pip install swig setuptools
cd mupdf && python scripts/mupdfwrap.py -b --csharp all

Using the bindings#

To use the bindings, one has to tell the OS where to find the MuPDF
runtime files.

	C++ and C# bindings:

	Windows.

set PATH=.../mupdf/build/shared-release-x64-py3.11;%PATH%

	Replace x64 with x32 if using 32-bit.

	Replace 3.11 with the appropriate python version number.

	Linux, OpenBSD.

LD_LIBRARY_PATH=.../mupdf/build/shared-release

(LD_LIBRARY_PATH must be an absolute path.)

	MacOS.

DYLD_LIBRARY_PATH=.../mupdf/build/shared-release

	Python bindings:

If the bindings have been built and installed using pip install,
they will already be available within the venv.

Otherwise:

	Windows.

PYTHONPATH=.../mupdf/build/shared-release-x64-py3.11

	Replace x64 with x32 if using 32-bit.

	Replace 3.11 with the appropriate python version number.

	Linux, MacOS, OpenBSD.

PYTHONPATH=.../mupdf/build/shared-release

Notes#

	Running tests.

Basic tests can be run by appending args to the scripts/mupdfwrap.py
command.

This will also demonstrate how to set environment variables such as
PYTHONPATH or LD_LIBRARY_PATH to the MuPDF build directory.

	Python tests.

	--test-python

	--test-python-gui

	C# tests.

	--test-csharp

	--test-csharp-gui

	C++ tests.

	--test-cpp

	Specifying the location of Visual Studio’s devenv.com on Windows.

scripts/mupdfwrap.py looks for Visual Studio’s devenv.com in
standard locations; this can be overridden with:

python scripts/mupdfwrap.py -b --devenv <devenv.com-location> ...

	Specifying compilers.

On non-Windows, we use cc and c++ as default C and C++ compilers;
override by setting environment variables $CC and $CXX.

	OpenBSD libclang.

	libclang cannot be installed with pip on OpenBSD - wheels are not
available and building from source fails.

However unlike on other platforms, the system python-clang package
(py3-llvm) is integrated with the system’s libclang and can be
used directly.

So the above examples use pkg_add py3-llvm.

	Alternatives to Python package libclang generally do not work.

For example pypi.org’s clang, or
Debian’s python-clang.

These are inconvenient to use because they require explicit setting of
LD_LIBRARY_PATH to point to the correct libclang dynamic library.

	Debug builds.

One can specify a debug build using the -d arg
before -b.

python ./scripts/mupdfwrap.py -d build/shared-debug -b ...

	Debug builds of the Python and C# bindings on Windows have not been
tested. There may be issues with requiring a debug version of the Python
interpreter, for example python311_d.lib.

	C# build failure: cstring.i not implemented for this target and/or
Unknown directive '%cstring_output_allocate'.

This is probably because SWIG does not include support for C#. This
has been seen in the past but as of 2023-07-19 pypi.org’s default swig
seems ok.

A possible solution is to install SWIG using the system package
manager, for example sudo apt install swig on Linux, or use
./scripts/mupdfwrap.py --swig-windows-auto ... on Windows.

	More information about running scripts/mupdfwrap.py.

	Run python ./scripts/mupdfwrap.py -h.

	Read the doc-string at beginning of scripts/wrap/__main__.py+.

How scripts/mupdfwrap.py builds the APIs#

Building the MuPDF C API#

	On Unix, runs make on MuPDF’s Makefile with shared=yes.

	On Windows, runs devenv.com on .sln and
.vcxproj files within MuPDF’s platform/win32/
directory.

Generation of the MuPDF C++ API#

	Uses clang-python to parse MuPDF’s C API.

	Generates C++ code that wraps the basic C interface, converting MuPDF
setjmp()/longjmp() exceptions into C++ exceptions and automatically
handling fz_context’s internally.

	Generates C++ wrapper classes for each fz_* and pdf_* struct, and uses various
heuristics to define constructors, methods and static methods that call
fz_*() and pdf_*() functions. These classes’ constructors and destructors
automatically handle reference counting so class instances can be copied
arbitrarily.

	C header file comments are copied into the generated C++ header files.

	Compile and link the generated C++ code to create shared libraries.

Generation of the MuPDF Python and C# APIs#

	Uses SWIG to parse the previously-generated C++ headers and generate C++,
Python and C# code.

	Defines some custom-written Python and C# functions and methods, for
example so that out-params are returned as tuples.

	If SWIG is version 4+, C++ comments are converted into Python doc-comments.

	Compile and link the SWIG-generated C++ code to create shared libraries.

Building auto-generated MuPDF API documentation#

Build HTML documentation for the C, C++ and Python APIs (using Doxygen and pydoc):

python ./scripts/mupdfwrap.py --doc all

This will generate the following tree:

mupdf/docs/generated/
 index.html
 c/
 c++/
 python/

All content is ultimately generated from the MuPDF C header file comments.

As of 2022-2-5, it looks like swig -doxygen (swig-4.02) ignores
single-line /** ... */ comments, so the generated Python code (and
hence also Pydoc documentation) is missing information.

Generated files#

All generated files are within the MuPDF checkout.

	C++ headers for the MuPDF C++ API are in platform/c++/include/.

	Files required at runtime are in build/shared-release/.

Details

Show/hide

mupdf/
 build/
 shared-release/ [Unix runtime files.]
 libmupdf.so [MuPDF C API, not MacOS.]
 libmupdf.dylib [MuPDF C API, MacOS.]
 libmupdfcpp.so [MuPDF C++ API.]
 mupdf.py [MuPDF Python API.]
 _mupdf.so [MuPDF Python API internals.]
 mupdf.cs [MuPDF C# API.]
 mupdfcsharp.so [MuPDF C# API internals.]

 shared-debug/
 [as shared-release but debug build.]

 shared-release-x*-py*/ [Windows runtime files.]
 mupdfcpp.dll [MuPDF C and C++ API, x32.]
 mupdfcpp64.dll [MuPDF C and C++ API, x64.]
 mupdf.py [MuPDF Python API.]
 _mupdf.pyd [MuPDF Python API internals.]
 mupdf.cs [MuPDF C# API.]
 mupdfcsharp.dll [MuPDF C# API internals.]

 platform/
 c++/
 include/ [MuPDF C++ API header files.]
 mupdf/
 classes.h
 classes2.h
 exceptions.h
 functions.h
 internal.h

 implementation/ [MuPDF C++ implementation source files.]
 classes.cpp
 classes2.cpp
 exceptions.cpp
 functions.cpp
 internal.cpp

 generated.pickle [Information from clang parse step, used by later stages.]
 windows_mupdf.def [List of MuPDF public global data, used when linking mupdfcpp.dll.]

 python/ [SWIG Python input/output files.]
 mupdfcpp_swig.cpp
 mupdfcpp_swig.i

 csharp/ [SWIG C# input/output files.]
 mupdf.cs
 mupdfcpp_swig.cpp
 mupdfcpp_swig.i

 win32/
 Release/ [Windows 32-bit .dll, .lib, .exp, .pdb etc.]
 x64/
 Release/ [Windows 64-bit .dll, .lib, .exp, .pdb etc.]
 mupdfcpp64.dll [Copied to build/shared-release*/mupdfcpp64.dll]
 mupdfpyswig.dll [Copied to build/shared-release*/_mupdf.pyd]
 mupdfcpp64.lib
 mupdfpyswig.lib

 win32-vs-upgrade/ [used instead of win32/ if PYMUPDF_SETUP_MUPDF_VS_UPGRADE is '1'.]

Windows-specifics#

Required predefined macros#

Code that will use the MuPDF DLL must be built with FZ_DLL_CLIENT
predefined.

The MuPDF DLL itself is built with FZ_DLL predefined.

DLLs#

There is no separate C library, instead the C and C++ APIs are
both in mupdfcpp.dll, which is built by running devenv on
platform/win32/mupdf.sln.

The Python SWIG library is called _mupdf.pyd which, despite the name, is a
standard Windows DLL, built from platform/python/mupdfcpp_swig.cpp.

DLL export of functions and data#

On Windows, include/mupdf/fitz/export.h defines FZ_FUNCTION and
FZ_DATA to __declspec(dllexport) and/or __declspec(dllimport)
depending on whether FZ_DLL or FZ_DLL_CLIENT are defined.

All MuPDF C headers prefix declarations of public global data with FZ_DATA.

In generated C++ code:

	Data declarations and definitions are prefixed with FZ_DATA.

	Function declarations and definitions are prefixed with FZ_FUNCTION.

	Class method declarations and definitions are prefixed with FZ_FUNCTION.

When building mupdfcpp.dll on Windows we link with the auto-generated
platform/c++/windows_mupdf.def file; this lists all C public global data.

For reasons that are not fully understood, we don’t seem to need to tag
C functions with FZ_FUNCTION, but this is required for C++ functions
otherwise we get unresolved symbols when building MuPDF client code.

Building the DLLs#

We build Windows binaries by running devenv.com directly.

Building _mupdf.pyd is tricky because it needs to be built with a
specific Python.h and linked with a specific python.lib. This is
done by setting environmental variables MUPDF_PYTHON_INCLUDE_PATH and
MUPDF_PYTHON_LIBRARY_PATH when running devenv.com, which are referenced
by platform/win32/mupdfpyswig.vcxproj. Thus one cannot easily build
_mupdf.pyd directly from the Visual Studio GUI.

[In the git history there is code that builds _mupdf.pyd by running the
Windows compiler and linker cl.exe and link.exe directly, which avoids
the complications of going via devenv, at the expense of needing to know where
cl.exe and link.exe are.]

C++ bindings details#

Wrapper functions#

Wrappers for a MuPDF function fz_foo() are available in multiple forms:

	Functions in the mupdf namespace.

	mupdf::ll_fz_foo()

	Low-level wrapper:

	Does not take fz_context* arg.

	Translates MuPDF exceptions into C++ exceptions.

	Takes/returns pointers to MuPDF structs.

	Code that uses these functions will need to make explicit calls to
fz_keep_*() and fz_drop_*().

	mupdf::fz_foo()

	High-level class-aware wrapper:

	Does not take fz_context* arg.

	Translates MuPDF exceptions into C++ exceptions.

	Takes references to C++ wrapper class instances instead of pointers to
MuPDF structs.

	Where applicable, returns C++ wrapper class instances instead of
pointers to MuPDF structs.

	Code that uses these functions does not need to call fz_keep_*()
and fz_drop_*() - C++ wrapper class instances take care of reference
counting internally.

	Class methods

	Where fz_foo() has a first arg (ignoring any fz_context* arg) that
takes a pointer to a MuPDF struct foo_bar, it is generally available as a
member function of the wrapper class mupdf::FooBar:

	mupdf::FooBar::fz_foo()

	Apart from being a member function, this is identical to class-aware
wrapper mupdf::fz_foo(), for example taking references to wrapper classes
instead of pointers to MuPDF structs.

Constructors using MuPDF functions#

Wrapper class constructors are created for each MuPDF function that returns an
instance of a MuPDF struct.

Sometimes two such functions do not have different arg types so C++
overloading cannot distinguish between them as constructors (because C++
constructors do not have names).

We cope with this in two ways:

	Create a static method that returns a new instance of the wrapper class
by value.

	This is not possible if the underlying MuPDF struct is not copyable - i.e.
not reference counted and not POD.

	Define an enum within the wrapper class, and provide a constructor that takes
an instance of this enum to specify which MuPDF function to use.

Default constructors#

All wrapper classes have a default constructor.

	For POD classes each member is set to a default value with this->foo =
{};. Arrays are initialised by setting all bytes to zero using
memset().

	For non-POD classes, class member m_internal is set to nullptr.

	Some classes’ default constructors are customized, for example:

	The default constructor for fz_color_params wrapper
mupdf::FzColorParams sets state to a copy of
fz_default_color_params.

	The default constructor for fz_md5 wrapper mupdf::FzMd5 sets
state using fz_md5_init().

	These are described in class definition comments in
platform/c++/include/mupdf/classes.h.

Raw constructors#

Many wrapper classes have constructors that take a pointer to the underlying
MuPDF C struct. These are usually for internal use only. They do not call
fz_keep_*() - it is expected that any supplied MuPDF struct is already
owned.

POD wrapper classes#

Class wrappers for MuPDF structs default to having a m_internal member which
points to an instance of the wrapped struct. This works well for MuPDF structs
which support reference counting, because we can automatically create copy
constructors, operator= functions and destructors that call the associated
fz_keep_*() and fz_drop_*() functions.

However where a MuPDF struct does not support reference counting and contains
simple data, it is not safe to copy a pointer to the struct, so the class
wrapper will be a POD class. This is done in one of two ways:

	m_internal is an instance of the MuPDF struct, not a pointer.

	Sometimes we provide members that give direct access to fields in
m_internal.

	An ‘inline’ POD - there is no m_internal member; instead the wrapper class
contains the same members as the MuPDF struct. This can be a little more
convenient to use.

Extra static methods#

Where relevant, wrapper class can have static methods that wrap selected MuPDF
functions. For example FzMatrix does this for fz_concat(), fz_scale() etc,
because these return the result by value rather than modifying a fz_matrix
instance.

Miscellaneous custom wrapper classes#

The wrapper for fz_outline_item does not contain a fz_outline_item by
value or pointer. Instead it defines C++-style member equivalents to
fz_outline_item’s fields, to simplify usage from C++ and Python/C#.

The fields are initialised from a fz_outline_item when the wrapper class
is constructed. In this particular case there is no need to hold on to a
fz_outline_item, and the use of std::string ensures that value semantics
can work.

Extra functions in C++, Python and C##

[These functions are available as low-level functions, class-aware
functions and class methods.]

/**
C++ alternative to `fz_lookup_metadata()` that returns a `std::string`
or calls `fz_throw()` if not found.
*/
FZ_FUNCTION std::string fz_lookup_metadata2(fz_context* ctx, fz_document* doc, const char* key);

/**
C++ alternative to `pdf_lookup_metadata()` that returns a `std::string`
or calls `fz_throw()` if not found.
*/
FZ_FUNCTION std::string pdf_lookup_metadata2(fz_context* ctx, pdf_document* doc, const char* key);

/**
C++ alternative to `fz_md5_pixmap()` that returns the digest by value.
*/
FZ_FUNCTION std::vector<unsigned char> fz_md5_pixmap2(fz_context* ctx, fz_pixmap* pixmap);

/**
C++ alternative to fz_md5_final() that returns the digest by value.
*/
FZ_FUNCTION std::vector<unsigned char> fz_md5_final2(fz_md5* md5);

/** */
FZ_FUNCTION long long fz_pixmap_samples_int(fz_context* ctx, fz_pixmap* pixmap);

/**
Provides simple (but slow) access to pixmap data from Python and C#.
*/
FZ_FUNCTION int fz_samples_get(fz_pixmap* pixmap, int offset);

/**
Provides simple (but slow) write access to pixmap data from Python and
C#.
*/
FZ_FUNCTION void fz_samples_set(fz_pixmap* pixmap, int offset, int value);

/**
C++ alternative to fz_highlight_selection() that returns quads in a
std::vector.
*/
FZ_FUNCTION std::vector<fz_quad> fz_highlight_selection2(fz_context* ctx, fz_stext_page* page, fz_point a, fz_point b, int max_quads);

struct fz_search_page2_hit
{{
 fz_quad quad;
 int mark;
}};

/**
C++ alternative to fz_search_page() that returns information in a std::vector.
*/
FZ_FUNCTION std::vector<fz_search_page2_hit> fz_search_page2(fz_context* ctx, fz_document* doc, int number, const char* needle, int hit_max);

/**
C++ alternative to fz_string_from_text_language() that returns information in a std::string.
*/
FZ_FUNCTION std::string fz_string_from_text_language2(fz_text_language lang);

/**
C++ alternative to fz_get_glyph_name() that returns information in a std::string.
*/
FZ_FUNCTION std::string fz_get_glyph_name2(fz_context* ctx, fz_font* font, int glyph);

/**
Extra struct containing fz_install_load_system_font_funcs()'s args,
which we wrap with virtual_fnptrs set to allow use from Python/C# via
Swig Directors.
*/
typedef struct fz_install_load_system_font_funcs_args
{{
 fz_load_system_font_fn* f;
 fz_load_system_cjk_font_fn* f_cjk;
 fz_load_system_fallback_font_fn* f_fallback;
}} fz_install_load_system_font_funcs_args;

/**
Alternative to fz_install_load_system_font_funcs() that takes args in a
struct, to allow use from Python/C# via Swig Directors.
*/
FZ_FUNCTION void fz_install_load_system_font_funcs2(fz_context* ctx, fz_install_load_system_font_funcs_args* args);

/** Internal singleton state to allow Swig Director class to find
fz_install_load_system_font_funcs_args class wrapper instance. */
FZ_DATA extern void* fz_install_load_system_font_funcs2_state;

/** Helper for calling a `fz_document_open_fn` function pointer via Swig
from Python/C#. */
FZ_FUNCTION fz_document* fz_document_open_fn_call(fz_context* ctx, fz_document_open_fn fn, fz_stream* stream, fz_stream* accel, fz_archive* dir);

/** Helper for calling a `fz_document_recognize_content_fn` function
pointer via Swig from Python/C#. */
FZ_FUNCTION int fz_document_recognize_content_fn_call(fz_context* ctx, fz_document_recognize_content_fn fn, fz_stream* stream, fz_archive* dir);

/** Swig-friendly wrapper for pdf_choice_widget_options(), returns the
options directly in a vector. */
FZ_FUNCTION std::vector<std::string> pdf_choice_widget_options2(fz_context* ctx, pdf_annot* tw, int exportval);

/** Swig-friendly wrapper for fz_new_image_from_compressed_buffer(),
uses specified `decode` and `colorkey` if they are not null (in which
case we assert that they have size `2*fz_colorspace_n(colorspace)`). */
FZ_FUNCTION fz_image* fz_new_image_from_compressed_buffer2(
 fz_context* ctx,
 int w,
 int h,
 int bpc,
 fz_colorspace* colorspace,
 int xres,
 int yres,
 int interpolate,
 int imagemask,
 const std::vector<float>& decode,
 const std::vector<int>& colorkey,
 fz_compressed_buffer* buffer,
 fz_image* mask
);

/** Swig-friendly wrapper for pdf_rearrange_pages(). */
void pdf_rearrange_pages2(fz_context* ctx, pdf_document* doc, const std::vector<int>& pages);

/** Swig-friendly wrapper for pdf_subset_fonts(). */
void pdf_subset_fonts2(fz_context *ctx, pdf_document *doc, const std::vector<int>& pages);

Python/C# bindings details#

Extra Python functions#

Access to raw C arrays#

The following functions can be used from Python to get access to raw data:

	mupdf.bytes_getitem(array, index): Gives access to individual items
in an array of unsigned char’s, for example in the data returned by
mupdf::FzPixmap’s samples() method.

	mupdf.floats_getitem(array, index): Gives access to individual items in an
array of float’s, for example in fz_stroke_state’s float dash_list[32]
array. Generated with SWIG code carrays.i and array_functions(float,
floats);.

	mupdf.python_buffer_data(b): returns a SWIG wrapper for a const unsigned
char* pointing to a Python buffer instance’s raw data. For example b can
be a Python bytes or bytearray instance.

	mupdfpython_mutable_buffer_data(b): returns a SWIG wrapper for an unsigned
char* pointing to a Python buffer instance’s raw data. For example b can
be a Python bytearray instance.

[These functions are implemented internally using SWIG’s carrays.i and
pybuffer.i.

Python differences from C API#

[The functions described below are also available as class methods.]

Custom methods#

Python and C# code does not easily handle functions that return raw data, for example
as an unsigned char* that is not a zero-terminated string. Sometimes we provide a
C++ method that returns a std::vector by value, so that Python and C# code can
wrap it in a systematic way.

For example Md5::fz_md5_final2().

For all functions described below, there is also a ll_* variant that
takes/returns raw MuPDF structs instead of wrapper classes.

New functions#

	fz_buffer_extract_copy(): Returns copy of buffer data as a Python bytes.

	fz_buffer_storage_memoryview(buffer, writable): Returns a readonly/writable Python memoryview onto buffer.
Relies on buffer existing and not changing size while the memory view is used.

	fz_pixmap_samples_memoryview(): Returns Python memoryview onto fz_pixmap data.

	fz_lookup_metadata2(fzdocument, key): Return key value or raise an exception if not found:

	pdf_lookup_metadata2(pdfdocument, key): Return key value or raise an exception if not found:

Implemented in Python#

	fz_format_output_path()

	fz_story_positions()

	pdf_dict_getl()

	pdf_dict_putl()

Non-standard API or implementation#

	fz_buffer_extract(): Returns a copy of the original buffer data as a Python bytes. Still clears the buffer.

	fz_buffer_storage(): Returns (size, data) where data is a low-level SWIG representation of the buffer’s storage.

	fz_convert_color(): No float* fv param, instead returns (rgb0, rgb1, rgb2, rgb3).

	fz_fill_text(): color arg is tuple/list of 1-4 floats.

	fz_lookup_metadata(fzdocument, key): Return key value or None if not found:

	fz_new_buffer_from_copied_data(): Takes a Python bytes (or other Python buffer) instance.

	fz_set_error_callback(): Takes a Python callable; no void* user arg.

	fz_set_warning_callback(): Takes a Python callable; no void* user arg.

	fz_warn(): Takes single Python str arg.

	pdf_dict_putl_drop(): Always raises exception because not useful with automatic ref-counts.

	pdf_load_field_name(): Uses extra C++ function pdf_load_field_name2() which returns std::string by value.

	pdf_lookup_metadata(pdfdocument, key): Return key value or None if not found:

	pdf_set_annot_color(): Takes single color arg which must be float or tuple of 1-4 floats.

	pdf_set_annot_interior_color(): Takes single color arg which must be float or tuple of 1-4 floats.

	fz_install_load_system_font_funcs(): Takes Python callbacks with no ctx arg,
which can return None, fz_font* or a mupdf.FzFont.

Example usage (from scripts/mupdfwrap_test.py:test_install_load_system_font()):

def font_f(name, bold, italic, needs_exact_metrics):
 print(f'font_f(): Looking for font: {name=} {bold=} {italic=} {needs_exact_metrics=}.')
 return mupdf.fz_new_font_from_file(...)
def f_cjk(name, ordering, serif):
 print(f'f_cjk(): Looking for font: {name=} {ordering=} {serif=}.')
 return None
def f_fallback(script, language, serif, bold, italic):
 print(f'f_fallback(): looking for font: {script=} {language=} {serif=} {bold=} {italic=}.')
 return None
mupdf.fz_install_load_system_font_funcs(font_f, f_cjk, f_fallback)

Making MuPDF function pointers call Python code#

Overview#

For MuPDF structs with function pointers, we provide a second C++ wrapper
class for use by the Python bindings.

	The second wrapper class has a 2 suffix, for example PdfFilterOptions2.

	This second wrapper class has a virtual method for each function pointer, so
it can be used as a SWIG Director class.

	Overriding a virtual method in Python results in the Python method being
called when MuPDF C code calls the corresponding function pointer.

	One needs to activate the use of a Python method as a callback by calling the
special method use_virtual_<method-name>(). [It might be possible in future
to remove the need to do this.]

	It may be possible to use similar techniques in C# but this has not been
tried.

Callback args#

Python callbacks have args that are more low-level than in the rest of the
Python API:

	Callbacks generally have a first arg that is a SWIG representation of a MuPDF
fz_context*.

	Where the underlying MuPDF function pointer has an arg that is a pointer to
an MuPDF struct, unlike elsewhere in the MuPDF bindings we do not translate
this into an instance of the corresponding wrapper class. Instead Python
callbacks will see a SWIG representation of the low-level C pointer.

	It is not safe to construct a Python wrapper class instance directly from
such a SWIG representation of a C pointer, because it will break MuPDF’s
reference counting - Python/C++ constructors that take a raw pointer to a
MuPDF struct do not call fz_keep_*() but the corresponding Python/C++
destructor will call fz_drop_*().

	It might be safe to create an wrapper class instance using an explicit call
to mupdf.fz_keep_*(), but this has not been tried.

	As of 2023-02-03, exceptions from Python callbacks are propagated back
through the Python, C++, C, C++ and Python layers. The resulting Python
exception will have the original exception text, but the original Python
backtrace is lost.

Exceptions in callbacks#

Python exceptions in Director callbacks are propagated back through the
language layers (from Python to C++ to C, then back to C++ and finally to
Python).

For convenience we add a text representation of the original Python backtrace
to the exception text, but the C layer’s fz_try/catch exception handling only
holds 256 characters of exception text, so this backtrace information may be
truncated by the time the exception reaches the original Python code’s except
... block.

Example#

Here is an example PDF filter written in Python that removes alternating items:

Details

Show/hide

import mupdf

def test_filter(path):
 class MyFilter(mupdf.PdfFilterOptions2):
 def __init__(self):
 super().__init__()
 self.use_virtual_text_filter()
 self.recurse = 1
 self.sanitize = 1
 self.state = 1
 self.ascii = True
 def text_filter(self, ctx, ucsbuf, ucslen, trm, ctm, bbox):
 print(f'text_filter(): ctx={ctx} ucsbuf={ucsbuf} ucslen={ucslen} trm={trm} ctm={ctm} bbox={bbox}')
 # Remove every other item.
 self.state = 1 - self.state
 return self.state

 filter_ = MyFilter()

 document = mupdf.PdfDocument(path)
 for p in range(document.pdf_count_pages()):
 page = document.pdf_load_page(p)
 print(f'Running document.pdf_filter_page_contents on page {p}')
 document.pdf_begin_operation('test filter')
 document.pdf_filter_page_contents(page, filter_)
 document.pdf_end_operation()

 document.pdf_save_document('foo.pdf', mupdf.PdfWriteOptions())

Do you have any feedback on this page?

This software is provided AS-IS with no warranty, either express or implied. This software is distributed under license and may not be copied, modified or distributed except as expressly authorized under the terms of that license. Refer to licensing information at artifex.com or contact Artifex Software, Inc., 39 Mesa Street, Suite 108A, San Francisco, CA 94129, USA, for further information.

 Next

 Progressive Loading

 Previous

 MuPDF & Javascript

 Copyright © 2004-2024, Artifex

 Made with
 Furo

 Last updated on 01. Mar 2024

 On this page

 	Language Bindings	The C++ MuPDF API	Basics
	Low-level C++ API
	Class-aware C++ API
	C++ Exceptions
	Example wrappers
	Extensions beyond the basic C API
	Runtime environmental variables	All builds
	Debug builds only

	Limitations

	The Python and C# MuPDF APIs
	Installing the Python mupdf module using pip
	Doxygen/Pydoc API documentation
	Example client code	Using the Python API
	Basic PDF viewers written in Python and C#

	Changelog
	Building the C++, Python and C# MuPDF APIs from source	General requirements
	Setting up	Windows only
	All platforms

	General build flags
	Building and installing the Python bindings using pip
	Building the Python bindings
	Building the C++ bindings
	Building the C# bindings
	Using the bindings
	Notes
	How scripts/mupdfwrap.py builds the APIs	Building the MuPDF C API
	Generation of the MuPDF C++ API
	Generation of the MuPDF Python and C# APIs

	Building auto-generated MuPDF API documentation
	Generated files

	Windows-specifics	Required predefined macros
	DLLs
	DLL export of functions and data
	Building the DLLs

	C++ bindings details	Wrapper functions
	Constructors using MuPDF functions
	Default constructors
	Raw constructors
	POD wrapper classes
	Extra static methods
	Miscellaneous custom wrapper classes

	Extra functions in C++, Python and C#
	Python/C# bindings details	Extra Python functions	Access to raw C arrays

	Python differences from C API	Custom methods
	New functions
	Implemented in Python
	Non-standard API or implementation

	Making MuPDF function pointers call Python code	Overview
	Callback args
	Exceptions in callbacks
	Example

